

BART Wheel Profile Change Cylindrical to Modified Tapered

Ben Holland, P.E., Manager Vehicle Systems Engineering Rolling Stock & Shops

Gregory Shivy Principal Track Engineer Maintenance & Engineering

Presentation Agenda

- ☐ BART System Overview Facts, Fleets, Rails
- ☐ Why Choose a Cylindrical Wheel Profile?
- ☐ What's Wrong with a Cylindrical Wheel Profile?
- **□** Opportunity for Change
- ☐ Evaluation of the Change Opportunity
- ☐ Transition Strategies

BART Overview – System

- ☐ Operation began in 1972, 450 Rohr cars
- ☐ 104 miles (168 km) mainline
- ☐ 44 stations
- Commuter and urban operation
- ☐ 420,000 weekday riders
- \Box 3 10 car consists
- ☐ Full ATC operation
- 80 mph (129 km/h) top speed
- 1000 VDC 3rd rail
- ☐ 5.5 ft (1676 mm) wide gauge track
- ☐ Full dedicated right-of-way
- ☐ 3 miles (4.8 km) dedicated test track

BART Overview – Existing Fleet

- ☐ 669 heavy rail cars
 - Lead Cars 289
 - 59 A2 Rohr cars
 - 150 C1 Alsthom cars
 - 80 C2 Morrison Knudsen cars
 - Mid consist cars 380
 380 B2 Rohr cars
- ☐ 2 door openings per side
- ☐ 60 & 56 seats per car
- 615 ft² (57 m²) & 655 ft² (61 m²) interior area
- 70 ft (21.3 m) x 10 ft (3.2 m)
- ☐ 63k lb (28.6 t) empty car super light weight
- ☐ 110k lb (49.9 t) max car weight civil limited

Unique Vehicle Characteristics

- ☐ Full lightweight Aluminum carbody structure
- Wide gauge for improved ride and roll stiffness
- Low roof line for compact frontal area
- Lightweight Aluminum wheels for low rotational inertia
- ☐ 1k Vdc operation for lower operating currents
- ☐ Full regeneration capability for maximum efficiency
- ☐ Stringent fire, smoke, toxicity requirements
- Advanced crash energy management design

"Fleet of the Future" – Fleet Replacement

- ☐ Contract with Bombardier Transportation, May 30, 2012
- 775 cars, includes 310 "D" cab cars and 465 "E" mid consist cars
- 10 pilot cars arrive mid to late 2016, production cars in 2017
- ☐ Transition phase with both fleets in operation approximately 10 years
- ☐ Each car will have 3 doors per side, advanced passenger information system, AC propulsion, robust HVAC, TCMS with advanced diagnostics, etc.
- ☐ Performance specification optimize car without constraint to existing fleet

Existing Rail System Statistics

- **□** 105 route miles of main track
 - 224 mainline track miles
 - 29 miles of aerial direct fixation (36" fastener spacing)
 - 27 miles of subway direct fixation (36" fastener spacing)
 - 47 miles at-grade ballasted concrete ties (30" Tie spacing)
- 29 interlockings / 289 mainline turnouts
- 119RE continuous welded rail
- Custom trackwork for cylindrical profile

Why Choose a Cylindrical Wheel Profile?

- □ Not entirely uncommon when District began operation SF Muni, CTA, PATH
 □ District has mostly tangent track
- ☐ District operates at high speed 80 mph
- ☐ No hunting at high speed on tangent track
- ☐ Ride quality with new wheels and rails is generally good
- ☐ Typical 1,000,000 mile wheel life when originally condemned at #8 flange and use of wheel lathes to minimally reprofile worn wheels

What's Wrong with a Cylindrical Profile?

□ No inherent wheelset steering through curves
 □ 2-point contact prevalent as wheel and rail profiles become worn
 □ Systemic issues with corrugation growth in tunnels and elevated track, accentuated in curves
 □ Areas with corrugation are unbearably noisy – mostly direct fixation
 ■ Reverberation in tunnels results in a resonating howling noise inside the cars
 ■ Noise from elevated tracks floods surrounding neighborhoods with noise
 □ Severe wheel flange wear and rail head wear in sharp curves – difficult to grind
 □ Expense to maintain wheels and rails is becoming excessive

Opportunity for Change – BART

- ☐ BART contract with Bombardier will replace entire existing fleet
- Philosophy improve customer and employee experience or at least make it equivalent to existing fleet
 - Ride quality always a priority for the District as a public transit provider
 - Noise internal to cars, and external to surrounding neighborhoods is huge issue
- □ Approach performance specification to ensure optimal design, proven designs and leveraging state of the art technology, including...

Wheel profile allowed to be optimized to reduce noise and improve wheel/rail wear characteristics

Opportunity for Change – Bombardier

- ☐ Collected data:
 - Laser measurements of the BART mainline rail profiles new and worn
 - Measured wheel profiles new and worn
 - Ran two instrumented wheelsets and truck over entire system to understand ride quality requirements and dynamic characteristics of rail network
- Analyzed the data and confirmed poor wheel/rail interaction with pervasive
 2-point contact resulting in excessive noise and severe wear
- Bombardier experts walked various track sections to confirm severity of rail conditions
- Optimized simulations to develop custom tapered wheel profile

Opportunity for Change – Bombardier

Several iterations to settle on custom BT-3 modified tapered wheel profile

Special trackwork difficult to simulate; requested BART to verify compatibility

BT-3 Wheel Profile

- New profile to integrate APTA minimum flange angle requirement:
 - 73.5 degree over 0.075 inch
 - 72 degree over 0.11 inch
- Increased flange height to allow for steeper flange angle
- Curving performance equivalent to BT-2 profile

BART tasked ENSCO through LTK to evaluate BT-3 profile compatibility with special trackwork and to confirm acceptability system wide

- Dynamic mainline tests using the 2 IWS modified with BT-3 profile
- Track geometry and rail profile map of BART rail network
- Special trackwork compatibility analysis
- Computer simulation analysis to corroborate Bombardier analysis

BT-3 profile, tangent track

- **☐** ENSCO and LTK confirmed definite operational improvements
 - Safe Compatible with special track work Good stability and ride quality
- □ Confirmed long term expectations
 - slower corrugation growth = reduced wheel/rail wear = lower noise

Bombardier, ENSCO and LTK helped BART refine transition strategy

- ☐ 6 years to reach steady state wear need to monitor wheels / rails
- ☐ OK to convert fleet within 1 year
- 2-step grinding program: sharp gauge points first, then rest of rails

Conclusion: LOWER NOISE and LOWER MAINTENANCE COSTS

Transition Strategies – M&E and RS&S

Collaboration ensures success

Maintenance & Engineering

Rolling Stock & Shops

Task	Description	Schedule	Task	Description	Schedule
1	Obtain management approval to proceed with contract service agreement for rail grinding support services (2 Yr. Base Contract w/3 one year options). To include grinding, planning and scheduling for two rail grinders, nightly grind quality Q/A Q/C, eddy current reduction conformation, post processing reporting and EGIS mapping of rail grinding progress.	4th Qtr FY16	1	Obtain management approval to proceed with fleetwide implementation of the BT-3 wheel profile	4 th Qtr FY16
			2	Obtain new or modified cutter heads with the BT-3 wheel profile for each wheel truing machine located at Daly City Shop, Hayward Shop and Richmond Shop	2 nd Qtr FY17
2	Procure two optical rail profile measuring systems and spare parts for existing District owned Rail grinders.	1st Qtr FY17	3	Revise existing wheel contracts to provide the BT-3 wheel profile	2 nd Qtr FY17
3	Begin rail grinding efforts with support from Contractor.	3rd Qtr FY17	4	Begin cutting the wheels on all cars in the fleet to the BT-3 wheel profile	Dependent on Task 2 for each named shop
4	Monitor rail profile quality at Bombardier recommended locations.	6 month intervals for 5 years.	5	Monitor how the BT-3 profile wears on a minimum total of 24 selected cars from the existing fleet, the new fleet and from each running repair shop	At each PM after each car is modified
5	Meet with RS&S staff to review the status of the transition	Quarterly for a minimum of six years from the date of Task 1	6	Meet with Maintenance & Engineering staff to review the status of the transition	Quarterly for a minimum of six years from the date of Task 1

THANK YOU!

Q&A?

